• 帮助中心

  • ADADADADAD

    历史水平考,历史水平考知识点

    2021历史水平考试知识点五篇[ 高考 ]

    高考 时间:2022-07-24 19:03:00 热度:1℃

    作者:文/会员上传 下载docx

    简介:

    进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。下面是小编给大家带来的高中历史水平考知识点,欢迎大家阅读!2021历史水平考试知识点五篇篇1一、“

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。下面就是小编给大家带来的高中数学学业水平考知识点,希望能帮助到大家!

    高中数学学业水平考知识点1

    定义域

    (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;

    值域

    名称定义

    函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

    常用的求值域的方法

    (1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等

    关于函数值域误区

    定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

    “范围”与“值域”相同吗?

    “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

    高中数学学业水平考知识点2

    等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

    面积公式

    若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

    S=ab/2。

    且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

    S=ch/2=c2/4。

    等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

    高中数学学业水平考知识点3

    1、柱、锥、台、球的结构特征

    (1)棱柱:

    定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

    表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

    几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

    (2)棱锥

    定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

    分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

    表示:用各顶点字母,如五棱锥

    几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

    (3)棱台:

    定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

    分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

    表示:用各顶点字母,如五棱台

    几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

    (4)圆柱:

    定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

    几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

    (5)圆锥:

    定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

    几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

    (6)圆台:

    定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

    几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

    (7)球体:

    定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

    几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

    2、空间几何体的三视图

    定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

    注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

    俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

    侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

    3、空间几何体的直观图——斜二测画法

    斜二测画法特点:

    ①原来与x轴平行的线段仍然与x平行且长度不变;

    ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

    高中数学学业水平考知识点4

    直线、平面、简单几何体:

    1、学会三视图的分析:

    2、斜二测画法应注意的地方:

    (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

    (2)平行于x轴的线段长不变,平行于y轴的线段长减半.

    (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

    3、表(侧)面积与体积公式:

    ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

    ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

    ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

    ⑷球体:①表面积:S=;②体积:V=

    4、位置关系的证明(主要方法):注意立体几何证明的书写

    (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

    (2)平面与平面平行:①线面平行面面平行。

    (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

    5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

    ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

    ⑵直线与平面所成的角:直线与射影所成的角

    高中数学学业水平考知识点5

    高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

    注意:

    函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

    求函数的定义域时列不等式组的主要依据是:

    (1)分式的分母不等于零;

    (2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

    (4)指数、对数式的底必须大于零且不等于1.

    (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.

    (6)指数为零底不可以等于零,

    (7)实际问题中的函数的定义域还要保证实际问题有意义.

    相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

    高中数学学业水平考知识点大全相关文章:

    1.高二会考数学知识点归纳五篇分享

    2.高中数学高考知识点归纳

    3.高二数学必考知识点精选5篇总结

    4.人教版高一数学必考知识点归纳

    5.精选高一数学必考知识点总结三篇

    6.高一数学必考知识点总结三篇

    7.高考数学知识点大全

    8.物理学业水平考必背知识点归纳

    9.高中生物学业水平考知识点总结分享

    10.2020最新高一数学常考知识点三篇

    2021历史水平考试知识点五篇.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    ADADAD
    热门栏目